Bayesian Unsupervised Topic Segmentation

نویسندگان

  • Jacob Eisenstein
  • Regina Barzilay
چکیده

This paper describes a novel Bayesian approach to unsupervised topic segmentation. Unsupervised systems for this task are driven by lexical cohesion: the tendency of wellformed segments to induce a compact and consistent lexical distribution. We show that lexical cohesion can be placed in a Bayesian context by modeling the words in each topic segment as draws from a multinomial language model associated with the segment; maximizing the observation likelihood in such a model yields a lexically-cohesive segmentation. This contrasts with previous approaches, which relied on hand-crafted cohesion metrics. The Bayesian framework provides a principled way to incorporate additional features such as cue phrases, a powerful indicator of discourse structure that has not been previously used in unsupervised segmentation systems. Our model yields consistent improvements over an array of state-of-the-art systems on both text and speech datasets. We also show that both an entropy-based analysis and a well-known previous technique can be derived as special cases of the Bayesian framework.1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topic Segmentation with a Structured Topic Model

We present a new hierarchical Bayesian model for unsupervised topic segmentation. This new model integrates a point-wise boundary sampling algorithm used in Bayesian segmentation into a structured topic model that can capture a simple hierarchical topic structure latent in documents. We develop an MCMC inference algorithm to split/merge segment(s). Experimental results show that our model outpe...

متن کامل

Hierarchical Text Segmentation from Multi-Scale Lexical Cohesion

This paper presents a novel unsupervised method for hierarchical topic segmentation. Lexical cohesion – the workhorse of unsupervised linear segmentation – is treated as a multi-scale phenomenon, and formalized in a Bayesian setting. Each word token is modeled as a draw from a pyramid of latent topic models, where the structure of the pyramid is constrained to induce a hierarchical segmentation...

متن کامل

Unsupervised Topic Modelling for Multi-Party Spoken Discourse

We present a method for unsupervised topic modelling which adapts methods used in document classification (Blei et al., 2003; Griffiths and Steyvers, 2004) to unsegmented multi-party discourse transcripts. We show how Bayesian inference in this generative model can be used to simultaneously address the problems of topic segmentation and topic identification; automatically segmenting multiparty ...

متن کامل

Unsupervised Topic Modelling for Multi-Party Spoken Discourse

We present a method for unsupervised topic modelling which adapts methods used in document classification (Blei et al., 2003; Griffiths and Steyvers, 2004) to unsegmented multi-party discourse transcripts. We show how Bayesian inference in this generative model can be used to simultaneously address the problems of topic segmentation and topic identification: automatically segmenting multi-party...

متن کامل

Unsupervised Text Segmentation Based on Native Language Characteristics

Most work on segmenting text does so on the basis of topic changes, but it can be of interest to segment by other, stylistically expressed characteristics such as change of authorship or native language. We propose a Bayesian unsupervised text segmentation approach to the latter. While baseline models achieve essentially random segmentation on our task, indicating its difficulty, a Bayesian mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008